Stress-induced beta-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome.
نویسندگان
چکیده
In some enterobacterial pathogens, but not in Escherichia coli, loss-of-function mutations are a common route to clinically relevant beta-lactam antibiotic resistance. We previously constructed an assay system for studying enterobacterial beta-lactam resistance mutations using the well-developed genetics of E. coli by integrating enterobacterial ampRC genes into the E. coli chromosome. Like the cells of other enterobacteria, E. coli cells acquire beta-lactam resistance by ampD mutation. Here we show that starvation and stress responses provoke ampD beta-lactam resistance mutagenesis. When starved on lactose medium, Lac(-) strains used in mutagenesis studies accumulate ampD beta-lactam resistance mutations independent of Lac reversion. DNA double-strand break repair (DSBR) proteins and the SOS and RpoS stress responses are required for this mutagenesis, in agreement with the results obtained for lac reversion in these cells. Surprisingly, the stress-induced ampD mutations require DinB (DNA polymerase IV) and partially require error-prone DNA polymerase V, unlike lac mutagenesis, which requires only DinB. This assay demonstrates that real-world stressors, such as starvation, can induce clinically relevant resistance mutations. Finally, we used the ampD system to observe the true forward-mutation sequence spectrum of DSBR-associated stress-induced mutagenesis, for which previously only frameshift reversions were studied. We found that base substitutions outnumber frameshift mutations, as seen in other experimental systems showing stress-induced mutagenesis. The important evolutionary implication is that not only loss-of-function mutations but also change-of-function mutations can be generated by this mechanism.
منابع مشابه
Chromosomal system for studying AmpC-mediated beta-lactam resistance mutation in Escherichia coli.
In some enterobacterial pathogens, but not in Escherichia coli, loss-of-function mutations in the ampD gene are a common route to beta-lactam antibiotic resistance. We constructed an assay system for studying mechanism(s) of enterobacterial ampD mutation using the well-developed genetics of E. coli. We integrated the Enterobacter ampRC genes into the E. coli chromosome. These cells acquire spon...
متن کاملThe Survey of Genes Encoding Beta-Lactamases, in Escherichia Coli Resistant to Beta-Lactam and Non-Beta-Lactam Antibiotics
Objective(s) Resistance to the new generation of cephalosporins which is mediated by Extended-Spectrum beta-lactamases (ESBLs) has been found among Escherichia coli isolates throughout the world. These resistance genes and their producers, the micro-organisms carrying beta-lactamases, are responsible for serious clinical and therapeutic problems among inpatients and it is necessary to pay more...
متن کاملAntibiotic Susceptibility and Multi-drug Resistance of Escherichia coli Isolates Producing CTX-M and TEM Type Beta-lactamases in Mashhad, Iran, in 2010
Background & Aims: One of the most common causes of bacterial resistance to beta-lactam antibiotics is beta-lactamase producing. The aim of this study was to compare the antibiotic resistance of urinary Escherichia coli (E. coli) isolates producing CTX-M and TEM type beta-lactamases, and to determine the strains with co-resistance to multiple antibiotics in Mashhad, Iran. Methods: E. coli b...
متن کاملHigh frequency of mutations in gyrA gene associated with quinolones resistance in uropathogenic Escherichia coli isolates from the north of Iran
Objective(s): Regarding the global burden of uropathogenic Escherichia coli (UPEC) infections, prevention and treatment of such infections play a significant role in healthcare management. The inordinate use of fluoroquinolones led to a worldwide spread of quinolone-resistant strains. Therefore, this study aimed to investigate mutations in codons 83 and 106 of gyrA gene in UPEC isolates in the ...
متن کاملThe involvement of mutation in the serine 83 of quinolone resistant determining regions of the GyrA Gene in resistance to ciprofloxacin in Escherichia coli .
Appearance of bacteria resistant to antibacterial agents puts physicians in trouble and threatens the health of the world. The rapid development of bacterial resistance in Escherichia coli to ciprofloxacin makes difficult the treatment of infectious diseases. So, detection of the locations of possible mutations in gyrase A gene ( gyrA ) in these mutants is very important to determine the mech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 191 19 شماره
صفحات -
تاریخ انتشار 2009